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The influence of adsorpt’ion on capillary evaporation of nitrogen from slit-shaped 
pores is discussed quantitatively. Thermodynamic reasoning results in a correction 
to the classical Kelvin equat.ion, similar to that discussed by Derjaguin. The connection 
between contact angle and capillary evaporation is discussed. It is shown that, except 
for very wide pores, liquids exhibiting contact angles with the solid adsorbent surface 
are not suitable for pore distribution analysis from vapor sorption data. The application 
of the corrected Kelvin equation t,o the calculation of pore-size distribution functions 
from nitrogen sorpt.ion isotherms is discnssed. Esamples show the proposed method 
to lead to satisfactory result< ill pr:~ctic’e. 

1. IKT~~~DuCTI~S 

In the preceding parts, IX-XIII, of 
this series (l-5), we have discussed the 
calculation of cumulative distribution func- 
tions from the adsorption branch and the 
desorption branch, respectively, for cy- 
lindrical pores and spheroidal cavities. 
It was shown there that the influence of 
adsorption on the equilibria governing 
capillary evaporation and capillary conden- 
sation necessitated the application of certain 
corrections to the classical Kelvin equation. 

In many cases the shape of the hysteresis 
loop of the vapor sorption isotherm and 
the shape of the t plot of the adsorption 
branch indicate the presence of pores which 
may be approximated by cylinders or 
spheroidal cavities. In certain instances, 
however, the B-type hysteresis loop con+ 

bines with a linear t plot up to high relative 
pressures. This may be an indication of 
either ink-bottle pores with rather wide 
bodies or of slit-shaped pores whose diam- 
eters ‘exceed twice the thickness of the 
adsorbed layer at the highest relative 
pressure of the linear part of the t plot. 
When the pores are narrower, downward 
deviations in the t plot indicat.e the presence 

of slit-shaped pores, which become blocked 
by the adsorbed layer. There are indications 
that pores of such small diamet.ers do not 
give rise to hysteresis phenomena during 
vapor sorption, so probably the concepts 
of capillarit’y break clown for these narrower 
pores. 

For wider pores, we may analyze t’he 
desorption branch of the isotherm for 
slit-shaped pores if proper corrections are 
made to the Kelvin equation in order to 
take into account adsorption in a proper 
way. This problem was treated before 
in some detail by Derjaguin (6)) who derived 
a corrected Kelvin equation. To our knowl- 
edge the equation of Derjaguin has not 
been used systematically for the analysis 
of sorption isotherms. The t curve of multi- 
molecular nit’rogen sorption on osidic sur- 
faces (7) enables us to make the proper 
corrections to the Kelvin equation. Pol- 
lowing the lines of reasoning given in the 
earlier parts of this series (l-5), we shall 
derive, in the present paper, an equation 
for the capillary evaporation which is 
similar to that derived by Derjaguin but 
which is more appropriate for use in bhe 
micropore region. 

393 



392 BROEKHOFF AND DE BOER 

The results of cumulative calculations 
may help to distinguish between ink-bottle 
pores with wide bodies and slit-shaped 
pores. In the first case a calculation along 
the desorption branch of the cumulative 
surface area for the model of slit-shaped 
pores will give rise to results that are high 
in comparison with the surface area as 
determined from the t plot of the adsorption 
branch (8). Care must, be taken to account 
for the presence of submicropores, however. 

2. THERMODYNAMIC TREATMENT 
OF EVAPORATION FROM 

SLIT-SHAPED PORES 

Generally, it is assumed that, at a certain 
relative pressure, t,, the thickness of the 
adsorbed layer in slit-shaped pores is inde- 
pendent of the pore diameter. This may 
be erroneous for very narrow pores, but 
we will assume this to be correct for pores 
wide enough to exhibit capillary evaporation 
and hysteresis phenomena. 

Thus, contrary to the case of cylindrical 
pores (1, Z), the thickness of the adsorbed 
layer at each relative pressures is determined 
solely by the standard adsorption isotherm, 
which may be written conveniently as 

RT ln(pdp) = F(t) (1) 

For an ideal vapor phase in equilibrium 
with the adsorbed layer RT In(po/p) is equal 
to the difference in thermodynamic potential 
of the bulk liquid and the adsorbed phase 
of thickness t at the same temperature. 
Capillary evaporation from a slit-shaped 
pore is determined by the equilibrium 
condition that evaporation of dN moles 
of condensed phase at constant temperature 
and pressure does not result in a change 
in free enthalpy, which in Part IX was shown 
to be equivalent to the requirement that 

ydA = ApdN (2) 

where y is the surface tension of the liquid- 
vapor interface, dA is the change in free 
surface area of that interface, and Ap is 
the difference in thermodynamic potential 
between the adsorbed phase and the gas 
phase. Equation (2) has been used before, 
e.g., by Kiselev (9) and by Brunauer (JO), 
but in general Ap is identified with RT 

ln(po/p), in which case the classical Kelvin 
equation results. This identification, how- 
ever, is not permitted, as, on account of 
adsorption, the thermodynamic potential 
of the condensed phase in the pore differs 
from that of the liquid by an amount which 
depends on the distance t’o the pore walls, 
and according to (1) may be expressed as 

Pa = l.lL - F(l). 

As a consequence, Eq. (2) may be written 
as 

Y dA = W” Wpdp) - WI dN (3) 

Relation (3) may be used in two, distinct, 
ways to obtain the corrections to the Kelvin 
equation for slit-shaped pores. 

A. The shape of the rnenascus. 

Applications of (3) to each point of the 
meniscus present in a slit-shaped pore 
filled with condensed phase leads to the 
equilibrium shape of the meniscus as well 
as to the conditions of stability, The treat- 
ment is completely analogous to that of part 
XII. In Fig. l(a) the shape of the meniscus is 
sketched. A section through the meniscus by 
a plane perpendicular to the solid surface 
walls and to the edge of the pores is shown in 
Fig. 1 (b). In a certain point of the meniscus, 
P, the angle between a tangent to the meniscus 
and the s-axis of Fig. l(b), is denoted by 
a. The curvature of the meniscus at the 
point P is equal to 

l/R = d sin(a)/dr (4) 

According to elementary theory of capil- 
larity, in the point P, dA is related to dN 
by (11) 

dA/dN = T’,/R (5) 

where V, is the molar volume. 
Substitution of (4) and (5) into (3) results 

in the differential equation for the meniscus 

1 d sin(a) 
-=dz R = &[RTln(%) -F(t)] 

(6) 

This equation shows the curvature of 
the meniscus to be zero for t = t,, viz., at 
the point of contact between the meniscus 
and the adsorbed layer. 
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FIG. l(a). The shape of the meniscus at the 
edge of a slit-shaped pore. 
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FIG. l(h). Section through the meniscus 

According to Fig. l(b), x is equal to 
t-(d/2). Integration of (6), and making use 
of the obvious boundary condition sin(u) = 
0 for t = d/2, results in the following 
relation for the slope of the meniscus: 

sin(a) = 
&[4~N-$ 

+ 1” F(t) dt] (7) 

The complete shape of the meniscus 
may be obtained from (7), by the sub- 
stitution 

dy/dx = tan(u) = sin(u)/ [l - COS~(~)]~‘~ 

and integration. This is only possible in 
very simple cases, e.g., when F(t) is identical 
to zero, the classical approximation. In 
this case, sin(u) is equal to 

[l/(rvm>I X RT M-dp>[t - (d/2)1 
Denoting 

rVdW’ all 

by Rk, it is easily shown that the shape of 
the meniscus is determined by 

y=Rr[R+t)?]liz 

which is the equation of a circle with radius 
Rk. For a stable meniscus to exist, it is 
clearly necessary that Rk is larger than 
(d/2) - t,, so the evaporation condition may 
be written as 

d 
$4”’ rTi7n 

RT Wpdp) 
(8) 

which, of course, is the classical Kelvin 
equation. 

For the evaporation of nitrogen from 
pores in oxidic adsorbents F(t) evidently 
is not identical to zero and direct analytical 
integration is impossible, although a nu- 
merical solution may be found. The con- 
dition of stability, however, may again be 
found from the consideration that for 
a stable meniscus the absolute value of 
sin(u) as given from Eq. (9) must, be less 
than or equal to 1 for t larger than t,. The 
behavior of the shape of the meniscus 
as a function of pressure exactly ressembles 
that discussed in Part XII (4) for cylindrical 
pores. At the evaporation pressure pD the 
meniscus is extended infinitely below the 
point of the contact with the adsorbed 
layer and at the point of contact the me- 
niscus just touches the adsorbed layer, 
which means that sin(u) = - 1 for t = t,. 
It immediately follows from (7) that the 
evaporation pressure p = pD is determined 
by the relat,ion 
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d rJ7m 
J 

d/2 

- - ‘a = TR ln(po/po) + 
F(t) dt 

2 (a RT ln(p,ip,) 

(9) 

Equation (9) closely resembles the equa- 
tion of Derjaguin in a somewhat different 
formulation and with a different limit of 
integrat’ion. 

B. Overall stability conditzon. 

The other way of deriving this equation 
is more consistent with the treatment 
of cylindrical pores as discussed in Part IX 
of this series (1). Upon completely filling 
and emptying the pore by letting the ad- 
sorbed layer change in thickness at constant 
temperature and gas pressure from t, to 
d/2, the change in interface area is S, the 
surface of the pore walls. Integration of 
(3) directly leads t,o 

ys=/-y?Tlll(~) -F(to]sg 
viz., 

-/I’, = RTln($(g - k,) - lTF(t)dt 

For each value of d, this relation is only 
satisfied at one unique relative pressure 
po/pO. Only at this pressure is pore filling 
and pore emptying not accompanied by 
a change in the free enthalpy of the 
system. Below this pressure no stable 
meniscus may exist as pore emptying results 
in a decrease in free enthalpy of the system. 
Above this pressure pore emptying results 
in an increase in free enthalpy of the system 
so it does not occur. Relation (9) may be 
immediately rearranged to (lo), so both 
are equivalent. The treatment of Section 
A has the advantage of leading to an insight 
into t,he shape of the meniscus and the 
process of capillary evaporation. 

3. THE ROLE OF CONTACT ANGLE 

In the case of partly wetting liquias 
some authors prefer to include into the 
Kelvin equation the contact angle between 
the liquid and the solid. In the present 

0 
- P/PO 

FIG. 2. Possible shape of the adsorption isotherm 
for the case of contact angle. Hatched part of the 
isotherm corresponds to metastable st,ates. 

treatment the angle between the meniscus 
and the x-axis (a), which is complementary 
to the contact angle, is seen to be a function 
of pressure as well as of pore diameter. At 
the pressure pD the contact angle in our 
treatment is always zero. This contact 
angle, however, is not the same contact 
angle as the macroscopic contact angle. 
If we accept the continuity between the 
adsorbed phase and the liquid phase in 
contact wihh the solid, the basis of the 
present treatment of capillarity, then the 
contact angle of capillarity is no independent 
concept but a property of adsorption when 
t’he number of layers adsorbed at the solid 
surface at saturation is finite. In fact it 
may be shown that the contact angle of 
caplllarity is a macroscopical concept, 
which only has significance for a solid in 
contact with a slab of liquid of infinite 
thickness. A detailed discussion of this 
subject is beyond the scope of the present 
paper, but will be published elsewhere. 

If t.he adsorption isotherm exhibits a 
finit,e thickness of the adsorbed layer at 
p/p0 = 1, denoted by t,, then the adsorption 
isotherm corresponding to larger thicknesses 
corresponds to a metastable supersaturation 
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branch. However, for very large thick- 
nesses of the adsorbed layer the properties 
of the adsorbed layer again will tend to those 
of the bulk liquid. Schematically, the adsorp- 
tion isotherm may be presented as shown 
in Fig. 2 (12). The adsorption isotherm 
may be described by a relation of the type 
of (I), but it is to be realized that for t > t,, 
F(t) is negative, and generally no empirical 
representation for F(t) may be found from 
experimental adsorption determinations. 

In principle Eq. (9) remains equally 
valid, although quantitative evaluation is 
only possible when d/2 < t,. An exception 
may be made for very wide pores. To demon- 
strate this we may write (9) in the form 

admitted for very wide pores. For smaller 
pores it leads to erroneous results. 

One important conclusion that may be 
drawn from the discussion presented in 
this section 1s that such vapors which 
correspond to liquids which only partially 
wet the solid adsorbent, should not be used 
for the analysis of pore sizes from the desorp- 
tion branch of the isotherms. There are 
no indications that there is a contact angle 
between liquid nitrogen and the oxides 
used as basis for the t curve of multimolec- 
ular adsorption: the asymptotic behavior 
of the sorption isotherms used for the de- 
termination of the t curve (7) points t.o com- 
plet’e wetting. 

tr d YV??L / F(t) dt 4. NUMERICAL EVALUATION OF 

- - ‘a = RT ln(p,JpD) ’ RGln(p,/pD) 2 
EQ. (9) FOR NITROGEN AT ITS 

s d'2 F(t) dt 

NORMAL BOILIXG POINT 

+ RG ln(po/pD) (11) 
Upon substituting t,he empirically found 

relations for the t curve (2) 

Realizing that the significance of F(t) F(t) 13.99 -=- 
is that it is equal to J.LL -~.r,, we may show 2.303RT t” 

- 0.034 for t less 10 8 

by application of the Gibbs adsorption F(t) 16.11 
theorem (15) that when d/2 approximates 2303~2’ = 7 
infinity, - 0.1682 exp(-0.113it) for t greater 6 b 

lim 
/ 

“’ F(t) dt = yl~,,[cos(p) - 11 
d/2-m 18 (12) into (9) and integrating, we find for y = 

8.72 dynes/cm and V,, = 34.68 clnR/mole, 
where cp is the contact angle of capillary. the following desorpt,ion relations: 

_ _ t = 2.025 + 13.99(1/t, - 2/d) - 0.034@/2 - tJ d 
2 a l”gh’PD) 

and 
d _ _ t = 2.026 + 16.11(1/t, - 2d) + 1.483[exp(-0.5685d) - exp(-O.l137t,)] 
2 a hdP’@D) 

(15b) 

Substitution of (12) into (11) yields the 
relation 

d rvm cos(cF) 
- - “’ = RT h(po/pD) ’ 2 

(14) 

only valid for very large d, where for 
PO/PO, t, already will be close to t, and the 
correction term at the right side of (14) will 
be relatively small. It thus is shown that 
incorporation of the contact angle of capil- 
larity into the Kelvin equation is only 

respectively. 
The relative pressure regions of the 

validity of (15a) and (15b), respectively, 
overlap. In general we may say that (15b) 
is valid above 0.45 relative pressure, whereas 
(15a) is a better approximation for more 
narrow slits. As in the treatment of cy- 
lindrical pores (4), it again is assumed that 
the influence of opposing walls on the re- 
lations for F(t) is negligible. This means 
a nonvalidity of Eq. (15) for very small 
pores. For these pores the concepts of capil- 
larity break down anyhow, but the sign& 
cance of Eq. (15) for relative pressures lower 
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TABLE 1 

RELATIVE PRESSURES AT WHICH COMPLETE 
CAPILLARY EVAPORATION TAKES PLACE, 

WITH THE CORRESPONDING PORE 
DIAMETERS (IN A), IN 

SLIT-SHAPED PORES 

P/PO 

Pore diameter a8 
calculated from 

Pore diameter ZM the classical 
calculated from (9) Kelvin equation 

(A) (A, 

0.9975 4195 3979 
0.9925 1504 1383 

0.9875 944.1 846.7 
0.9825 696.4 612.8 
0.9775 555.2 480.5 
0.9725 463.2 395.3 
0.9675 398.3 336.0 
0.9625 349.8 292.6 
0.9575 312.3 259.5 
0.9525 282.3 233.4 

0.9475 257.8 212.4 
0.9425 237.4 195.0 

0.9375 220.1 180.4 
0.9325 205.3 167.9 
0.9275 192.4 157.1 

0.9225 181.1 147.8 
0.9175 171.1 139.5 
0.9125 162.2 132.2 

0.9075 154.3 125.6 
0.9025 147.1 120.0 

0.89 131.8 107.4 

0.87 113.4 92.30 
0.85 99.60 81.12 

0.83 88.97 72.47 
0.81 80.50 65.48 

0.79 73.58 59.79 
0.77 67.82 55.13 
0.75 62.94 51.15 

0.73 58.74 47.71 
0.71 55.09 44.71 

0.69 51.88 42.04 
0.67 49.04 39.67 

0.65 46.49 37.54 
0.63 44.19 35.61 
0.61 42.10 33.85 
0.59 40.20 32.24 

0.55 36.82 29.39 
0.53 35.32 28.12 
0.51 33.92 26.93 

0.49 32.61 25.82 
0.47 31.37 24.78 
0.45 30.21 23.79 

0.43 29.11 22.86 
0.41 28.06 21.98 
0.39 6.922 21.13 

0.37 25.98 20.33 

TABLE 1 (Continued) 

P/PO 

0.35 

0.33 
0.31 

0.29 

0.27 
0.25 

0.23 
0.21 

0.19 

0.17 
0.15 

0.13 

0.11 

Pore diameter ss 
calculated from 

Pore diameter as the classical 
calculated from (9) Kelvin equation 

(A) (A) 

25.08 19.56 
24.20 18.82 
23.35 18.11 
22.52 17.42 

21.71 16.75 

20.91 16.10 
20.13 15.46 

19.36 14.84 

18.59 14.21 
17.82 13.60 

17.04 12.99 
16.25 12.36 
15.44 11.73 

than, say, 0.40 is uncertain. The influence of 
the opposing walls itself will lead to even 
larger pore diameters than those predicted 
from Eq. (15). 

In Table 1 solutions of Eq. (15) for 
a number of relative pressures are given, 
together with the diameters predicted by 
the classical Kelvin equation. The influence 
of adsorption is seen to result in a sub- 
stantial increase in predicted pore diameter. 

5. CALCULATIONS OF 

PORE DISTRIBUTIONS 

The calculation of pore distributions 
for slit-shaped pores is far less complicated 
in practice than that for cylindrical pores 
(2, 4). Owing to the absence of curvature 
of the adsorbed layer, the method of Steg- 
gerga (14) and of Innes (15) may be used 
without modification except for the re- 
placement of Kelvin radii by the solutions 
of Eq. (15). Again the desorption branch 
of the isotherm is divided into a number of 
relative pressure regions, corresponding to 
a decrease of volume sorbed by the solid 
(expressed in ml of condensed phase). Over 
the kth relative pressure region, this de- 
crease is denoted by dVko, the diameter 
of the pores emptying at the mean relative 
pressure of the region by dk, the pore volume 
of this group of pores by Vk, the correspond- 
ing surface area by Sk, the thickness of 
the adsorbed layer at the high relative 
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pressure side by 2k.-1 and at the low relative 
pressure side by tk. Pore volume and pore 
surface area may then be calculated from 

vk = (dk ’ 2tk) dVkc - (tk-1 - tk) Cl & 

i=l 

(1’3) 

Sk = 2Vk/dk (17) 

The actual distribution calculation, which 
is started at saturation, hence at p/p0 = 1, 
must not be extended downwards further 
than the closing point of the hysteresis 
loop. Apart from the uncertainty in the 
validity of Eq. (9) in the region where 
hysteresis is no longer observed, a further 
extension downwards introduces an error in 
the vaiue found for S,,, from the distribution 
calculataon whzch is purely mathematical in 
character. In the region where no hysteresis 
is observed, values for dVkc from the exper- 
imental isotherm are in general small and 
the influence of t,he correction term 

k-l 

(h-1 - I!?) 2 si 

i=l 

in each step of the calculation is quite 
large. The difference between the two terms 
between the brackets of Eq. (16) is inter- 
preted mathematically as pore volume 
from pores emptying by capillary evapo- 
ration, and apparently such pore volume 
is found until the value for S,,,, the results 
of the summation series at the right side 
of the correction term, is equal to the surface 
area as calculated from the slope of the 
t plot. Thus, if in the progress of the calcu- 
lations this cumulative surface area is not 
equal to the total surface area at the closing 
point of the hysteresis loop, a further 
extension downwards of the cumulative 
calculation in many cases leads to a perfect 
agreement between both quantities even 
when the t plot indicates the presence of 
quite narrow slits in the submicropore 
region where Eq. (9) certainly is not valid. 
Of course such an agreement has no physical 
significance whatever. At a relative pressure 
of 0.4, where no hysteresis is observed 
anymore with nitrogen as an adsorbate, 
the theoretical width of the slits is about 

28 8, so we may assume the cumulative 
surface area at the closing point of the 
hysteresis loop to be the strface area present 
in pores wider than 28 A. In Part VII of 
this series (16) it was shown t,hat for slit- 
shaped pores the slope of the t plot of the 
adsorption branch at each relative pressure 
is a measure of the surface area present 
in pores wider than twice the thickness of 
the adsorbed layer at this relative pressure. 
Thus, the surfoace area present in pores 
wider than 28 A will be given by the slope 
of the t plot at a relative pressure of approx- 
imat#ely 0.88. Unfortunately, there still 
is some ambiguity with respect to the 
t value at such high relative pressures (17), 
which, although of little influence on the 
results of the calculation of pore diameters 
from Eq. (15b), has a large influence on 
the determination of the exact slope of 
the t plot at relative pressures exceeding 
0.75 to 0.8. The slope of the t plot at this 
last relative pressure is a measure of sugface 
area present in pores wider than 20 A. In 
t#his paper it is recommended to compare the 
cumulative surface area at the closing 
point of the hysteresis loop t’o the surface 
area from the t plot at the highest pressure 
used, viz., about 0.8. This procedure should 
lead to physically significant results, and 
it may be expected that agreement bet,ween 
bot#h quantities is an indication of t,he 
soundness of the model of slit-shaped pores. 
For slits, this test of the pore model is the 
more important as the possibility of con+ 

paring the results from the desorption 
branch and from the adsorption branch, 
as in the case of open cylinders (5), is absent. 

6. EXAMPLES OF APPLICATIOS 

As illustrations of the results of the 
method proposed in the present. paper, we 
chose some isotherms exhibiting a B-type 
hysteresis loop, as published by Lippens (18) 
and by van Doorn (19). According to 
Lippens and de Boer, during the dehydration 
of well-crystallized boehmite, slit-shaped 
pores are generated, initially together with 
pores in the submicropore region. Accord- 
ing to van Doorn and de Boer, graphitic 
oxide consists of laminae, with slit-shaped 
pores in between. These samples seem to be 
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FIG. 3. 1 Plots of the adsorption branch of nitrogen isotherms on various graphitic oxides (17). 

suitable for testing the present method of as calculated with the aid of the uncor- 
calculation. t Plots of the boehmite samples 
of Lippens (20), furnishing us with the 
surface area present in wide pores, have 
been published before. t Plots of the samples 
of van Doorn are represented in Fig. 3 and 
indicate the presence of a substantial 
amount of submicropores. In Table 2, the 
cumulative surface areas at the closing 
point of the hysteresis loop are presented 
t,ogether with the cumulative surface areas 

rected Kelvin equation (8), and the areas 
present in wide pores, as determined from 
the t plots. Agreement between the results 
of the present treatment and the t area 
(with which we mean the surface area 
deduced from the slope of the t plot) in 
wide pores is especially satisfactory for the 
graphitic oxide samples. For the samples 
BOG 450 and BOG 580, where a large 
amount of surface area was still present 

TABLE 2 
CUMTJLATIM SURFACE AREAS AND PORE VOLTJMES IN SLIT-SHAPED PORES, CALCULATED 

FROM THE DESORPTION BRANCH OF NITROGEN SORPTION ISOTHERMS BY MEANS 
OF A CORRECTED KELVIN EQUATION, As COMPARED TO THE RESULTS 

OF A CLASSICAL PORE DISTRIBUTION CALCULATION 

p jpo of closing 
point of 

SC”, s..m ohsa 
Sample cod.9 

hysteresis 
loop &k-) W/d b’/P) c&I, 

VO”ln VC”rn OlDI 
bug) (W&9 

BOG 450 0.46 5.1 8.5 11.7 0.039 0.043 0.045 
BOG 580 0.44 17.2 21.5 30.0 0.085 0.089 0.093 
BOG 750 0.48 19.1 16.2 22.0 0.139 0.138 0.142 
Graph-ox. 4H 0.45 22.2 21.8 30.9 0.073 0.077 0.082 
Graph-ox. 5RI 0.47 19.5 21.2 30.5 0.071 0.072 0.078 
Graph-ox. 5RII 0.41 23.5 20.1 28.2 0.069 0.069 0.073 

a The BOG samples were taken from the publication of Lippens (16). The graphitic oxide sample results 
were published by van Doorn (17). 
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in submicropores, the agreement is less 6. 
satisfactory. The results from the use of 
the uncorrected Kelvin equation in all ‘. 
cases are high in comparison to the t area 
present in wide pores. 

In general, if the cumulative surface 
7. 

area at the closing point of the hysteresis 8. 
loop is far higher than the appropriate 
t area, this may be an indication of wide- 9. 
bodied ink bottles, exhibiting a B-type 
hysteresis loop and no upward deviations 
in the t plot, these latter deviations occurring 10. 
at too high a relative pressure. Small de- 
viations between St and SC,,, however, I’* 
may be caused by the approximate character 
of any pore model idealization as well as 12 
by uncertainties in the determination of ’ 
surface areas from sorption data (21). 
Their importance must not be overstressed. 

In Fig. 4, for some samples the cumulative 
surface area distribution functions as calcu- 
lated with the aid of (9) and with the un- 
corrected Kelvin equation, respectively, 
are shown. The shift to larger pore width 
of the distribution function by application 
of the proper corrections for the influence of 
sorption, is clearly demonstrated. 
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